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GAIN MODIFICATION IN A BACKWARD PROPAGATION NEURAL NETWORK

Our research into backward propagation has led to a number of new theoretical and

empirical results. We have developed a generalized version of backward propagation

which incorporates gain modification. In our generalized network, both gains and

synapses are modified by a backward propagation procedure. Synapses are modified in

proportion to the negative gradient of the energy with respect to the synaptic weight as in

ordinary backward propagation, and gains are modified in proportion to the negative partial

derivative with respect to the gain. Since the resulting error signals for the gain and
synaptic weights are proportional to one another, the computational complexity of our

generalized network is comparable to that of the original backward propagation model.

Simulations of the new network have been performed on a concentric circle paradigm in

two-dimensions. In the concentric circle problem, we present the x and y coordinates of

patterns in the unit circle. Those patterns which lie outside of a pre-determined radius are

in one class, while those interior to the radius belong to a second class. In our technical

report "Gain Modification Enhances High Momentum Backward Propagation" (Bachmann,

1989) we demonstrated that a combination of high momentum and gain modification leads

to faster convergence rate compared with high momentum alone. Bare backward

propagation converged at an even slower rate, as expected. The definition of convergence

for this study was that the network response for all patterns fall within 0.1 of the target

output. Additional work which we have carried out since the publication of our report has

shown that the onset of generalization for this paradigm actually occurs on fairly short time

scales, and there is essentially little difference in generalization between momentum and

momentum with gain modification on short time scales. However, both of these

approaches achieve significantly better levels of generalization than bare backward

propagation on short time scales. In essence, we have shown that with momentum or a

combination of gain modification, the network learns to generalize rapidly compared to

ordinary backward propagation. However, in precisely fitting the training data, the best

convergence rate is achieved by a combination of gain modification and momentum.

STATISTICAL FORMULATION OF FEATURE EXTRACTION

Our mathematical analysis of unsupervised learning has led to the statistical formulation of

the parameter estimation problem associated with unsupervised learning in a neural

network. The network is presented as an exploratory projection pursuit method that



performs feature extraction (or dimensionality reduction) on the training data set. The

formulation, which is similar in nature to PP, is based on a minimization of a cost function

over a set of parameters, yielding an optimal decision rule under some norm.

We have presented a new projection index (cost function) that favors directions possessing

multi-modality, where the multi-modality is measured in terms of the separability property

of the data. The synaptic modification equations, which perform the minimization of the

cost function, turn out to be similar to the synaptic modification equations governing

learning in BCM neurons (Bienenstock, Cooper, and Munro 1982). This has led to a new

statistical viewpoint on the biologically-inspired BCM neuron, making it a plausible

candidate for statistical feature extraction. The directions (synaptic weights) sought by the

neuron maximize some kind of skewness measure of the projected distribution in this

direction, which is one of the measures of deviation from normality, and therefore a

direction which discovers an important structure of the high-dimensional data.

A network was presented based on the multiple feature extraction formulation. Both the

linear and non-linear neurons were analyzed.

Part of the analysis of the synaptic modification equations, which are stochastic in nature

due to the random inputs, was to compare their trajectories with a deterministic differential

equation. The deterministic equation corresponds to the average (expected value) of the
random differential equation, and is much easier to handle since it was shown that it

represents the gradient of our projection index.

The connection between the synaptic modification equations and their deterministic version

was analyzed by extending a general result on random differential equations (Geman,

SIAM 1979). This work concerns differential equations which contain strong mixing

random process. Mixing roughly says how the future of a random process depends on its

past. The solution process is shown to be well approximated in a probabilistic sense by a

deterministic trajectory, over infinite time interval, using the interplay between the rate of

fluctuations of the random process, and the rate of the mixing.
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Abstract This paper concerns differential equations which contain strong
mixing random processes. The solution process is shown to be well approx-
imated by a deterministic trajectory, over an infinite time interval, using
the interplay between the rate of fluctuations of the random process and
the rate of the p mixing. An application of the result is given for analysing
synaptic modifications in Neural Networks.

1. Introduction

The mathematical theory of stochastic differential equations is concerned mainly wP a

the study of t6 equations and the associated Markov process. Mostly, the results on non

It6 type equations have been concerned with the condlitions under which xr,(t) converges (as

-- 0) to a diffusion process on finite intervals [0,T/E) (cf. Stratonovich, 1963; Coghurn

and Hersh, 1973; Papanicolaou and Kohler, 1974; Blankenship and Papanicolaou 1977).

Averaging results for random differential equations are usually discussed in conjunction with

the law of large numbers Kohler and Papanicolaou (1976) with the central limit theorem

for (z,(t) - y,(t))/Vc on [0, T] (cf. Khasnminskii, 1966; and White 1976). Geman (1979)

showed that the solution process of a random differential equation which contains strong

mixing random process is well approviimated by a deterministic tiajectory over a finite

time interval, and for a more restricted systems, over the infinite time interval. Analysis

wopl2 v2.11 1



N. Intrator March 9, 1990

analogous to that was carried out on It6 type equations by Vrkoc (1966), and by Lybrand

(1975).

In this paper we shall continue the direction taken by Geman and approximate the solu-

tion process by a deterministic trajectory over an infinite time interval, using the interplay

between the rate of fluctuations of the random process and the rate of the i mixing, yield-

ing a result for a wide family of nonlinear random differential equations. We will establish

conditions under which the random solution stays close in L' sense to the associated deter-

ministic solution. The result is particularly useful when a converging deterministic equation

is approximated by a random equation that is more computationally feasible. Section 4 is

devoted to such an application, in the theory of synaptic modification in Neural Networks.

Similar analysis was carried out on the discrete time version of such equations, see Ljung

(1978), Kushner and Clark, (1978), Dupuis and Kushner (1987), and the references therein.

2. Formulation and statement of the problem

In this section we briefly summarize the relevant results form Geman (1977, 1979).

Let O(t,w) be a bounded station-7,ry stochastic process with .F01 and F,' the a-fields

generated by {f(r,w): 0 < r < t}], and {f(r,w) : t < r < oo} respectively. Let the signed

measure vt,6 be defined on (SIx Q,_F1 x .- "+6) by

vt 6 =P(w :(ww)EB) -P x P(B), for B E. x

For any {B E Fx' .X '-,}, the set (w : (w, u,) E B) is in F, and since it is also a monotone

class, v is well defined. The stochastic process o(t,w), is said to have Type II , mixing if

(6) = sup sup ,6(A) -- 0.
>O AE ' Y.l, 6-o

Remark on mixing: The results we describe hold for Type I mixing as well, both of

which were introduced by Volkonskii and Rozanov (1959), since for both types of mixing

we have IvIt,6(fl x 11) < 2 (6).

wopl2 v2.11 2
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Let e be a positive number, and consider the system:

Sw(t,W) = HJ(X, (t, w), w, t),

.(t) = G,.(y.,(t), t),1 (2.1)

z,(O,w) = y,(O) = xo E R".

Assume:

1. H is jointly measurable with respect to its three arguments.

2. G.(z,t) = E[H(x(s, w), t/c)], and for all i and j

-a Gi(z, t) exists, and is continuous in (z, t).

3. For some T > 0:

a. There exists a unique solution, x(t, w), on [0, T] for almost all w; and

b. A solution to

s, ) =G(g(t, s, x), t), g(s, s, z)=

exists on [0, T] x [0, TI x Rn.

The following notations will be used:

def1. H,(,(t, w),w, t) = H(x,(t,w),w, t/E)

2. g,(t,s , z) = (o/O9)g(t, s, x).

3. g=(t,s,z) = the n x n matrix with (i,j) component (0/z 1 j)g,(t,s, X).

4. For H(z,w,r) define the families of a-fields .' aaid TiF such that, for each t > 0. _F

contains the a-field generated by

f H(x, w, 7-): 0 < -" < t, x C- R"}

and Fco contains the a-field generated by

{If(z,LO,r) : t < 7 < oo, x C R"

wopl2 v2.11 3
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The relation between the random differential equation and its averaged version for system

(2.1) under conditions (1), (2), and (3) is given by:

Lerrma (Geman 1977) For any C' function K : R' - R1 and t E (0, T):

E[K(x(t))] = K(y(t)) + K(9(t, s, z(s,w)))) .H(z(s, w), q, s)dv,,ods,

provided that

K g(,s, x (s, w)))) - H (x(s, w), w, s), n

are absolutely integrable on f0 x l x [0, T], with respect to dP(w)dP(77)ds.

The proof of the lemma is based on the relationship between the initial conditions in

time and in space for an ODE, namely: If g(t, s, x) is the function satisfying

g(t, s, z) = G(g(t, s, x), t)

then

g.(t, s, x) = -gr(t, s, x)G(x, s)

for all t E [0, oo), s E [0, oo), and z E R '.This follows from the observation that g(t,s,x)

is constant along trajectories of the, form (s, .(s)) (cf. Hartman, 1964 chap 5).

Theorem (Geman, 1977) Finite time averaging. Assume also that:

4. There exist continuous functions B, (r. t), B,(r, t), and B 3 (r, t), such that for all i, j, k. 7 >

0, and w:

a. I Hi(z,w,t,r) 1< B1(I x

b. I (O/Ozj)Hi(X,w, t, r) 1!5 B2( (, t);

c. I(a 2 / x Oz)II,(X,,t,r) 1< B.(3 . Jt).

5. SUP,>0.tJ0,T] y,(t) 1< B4 for some B4 and T.

wopl2 v2.11 4
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Then

sup I z(t)-y,(t) 1 -o
tE[0,T]

in probability.

3. Averaging on [0, oo)

When averaging on an infinite interval we require that e be a function of t and c \ 0,

meaning that the mixing rate becomes stronger in time. More specifically, let c be a function

of the form E(t) = eoZ(t) where Z is monotonically decreasing to zero in time.

The above lemma still holds when x, H, g and G are replaced by Z,, He, g, and G,

respectively, and also when e becomes a function of t.

In order for the approximation to hold on [0, oo) we require that B1 , B2 , B 3 are constants

in condition 4 (this will be relaxed later) extend condition 5 to hold for t E 90, 0C), and add

the following relation between the rate of the mixing of H and the convergence of t to zero:

6. 3 7 > 0, c > 0, such that o(b) < b -", and Z(t) < t-( +1' c), for a monotone decreasing

Theorem 3.1 Assume He is of Type II mixing, and satisfies condition 1-6. then

lir sup Er X,(t) - y,(t) I__ 0.
CoO0 t>O

Proof: Assume first that t is an integer. Fix co and apply the lenuna to the system using

K(x) =1 x - y,(t) I2:

E I zx(t) - y,(t) 2=
= jt ( '(g,(t, s, .r,(s,w)))) •,(.r(s,w), Y7, s)dt,,.ods

1 k - i J ( -T K ( y , ( t , S , . r ( s, , ) ) ) ( S '( (r , u ) , ,, .) , ', o ,
k= 1 -. 11

wopl2 v2.11 ,5
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For any fixed 6k > 0 (to be chosen later), since each integral is bounded we can write Vk:

i = .K(g( t,s,z (s,w))) H,(z(s,w),Ths)dv,,ods

if + a ( K((t, ,,(S - k,

+ -kk1+6& f xQ 0
H x,(s- 16k,wu,), 77, s) dv,,Ods

+ ' i j( K(g .,(t s, T(s, w)))) H,(z (s, w), 77, s)

KI -(K(g, (t, s, E&,( - .5k,w)U;) H, (z.,(s - 6k,w"), 77, S)}Idv,,Ods.

The bounds on z, and its derivatives, and the smoothness of K imply that I is O(bk). In

the second term we can replace v,,O by v,-6,6 since these measures agree on (fl x Q, .Fo 6 X

Y.'), s > 6, and since z,(s - 6,wo) is F0 6 measurable. Since vt,6 is the difference of two

probability measures, the total variation measure satisfies:

vjt,6(Q x Q) ! 2, and vIt,6( x Q) = 2 Z ,i.4),
AE 70 x 7, 6

therefore, with Type II (or I) mixing: Ivit,6(O x Q) < 2:(b). Applying this to the second

integral and using the above bounds again we get that 11 is O ;(kc(k - 1))). The last

term is also 0(6k) from the smoothness of H, and of x,.

Now choose k , c(k - I) -(1+1), k > 1, then since c(k - I) K to(k

we get 6k/e(k- 1) (k - 1)4-T+ 1. From the condition on p we have :(b,'t(k- 1)) <

E.f(k - -)-(1+ "Y). Since y > 0, the sum

0( 6k) + 0 ( (bk(k - I)1)
k>i

For the segment of t between two integers, an analogous argunient is applied yielding an

extra term of the form o(r + 0). therefore E Ir,(t) - y (1) 0 onforly i

t.

wopl2 v2.I1 6
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This implies that

sup I z,(t) - y.(t) I2= 0 o(+ ')),
t>o

lim sup E I - t) I'= 0.9o-0 t>0

The following problem is closely related: For fixed w, let H(z, w, t) map R" x Rm x R1

into R". Assume that for each x, H(z, w, t) is a mixing process, and for each .x and t define

G(z, t) = E[H(x, w, t)]. Consider the random equation

(t,w) = H(z (t,w),w, t), z (0,w) = z0, (3.1)

with its averaged equation

; (t) = ZG(y (t),t), y (O) --o. (3.2)

For equation (3.2) condition 6 becomes:

6'. 3- > 0, such that

i) (6) < b-",

i~(t) = eor(t)t-P, for p 1, c > -, and Vt: 0 < cl < r(t) < c'.

Theorem 3.2 Under the assumptions of theorem (',1) and (6');

lim sup E I xi(t) - Yi(t) 12 = O.
to-0 t>0

Proof- Apply the change of variables: t = Ts , dt =-(2 c)7'cd7, to equation (3.1):

S(,-W) = .- , +c)r(-r2+c)I , ( ,W,, 2+C/ O)(2 - c)rltc

= r(T"+c)Jh,(r,,w, ,./E(-)),

for f(T) = cor-(t+c). Now observe that c satisfies condition (6) in theorem (3.1), which

gives the desired result.

wopl2 v2.11 7
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As can be seen from the proof, p has to satisfy the conditions < p <_ 1, and Z(t) has

to be greater than t -1 so that r(t) _: co > 0, which allows the invocation of the previous

theorem. It follows that if i(t) = t - 1 , a convergence is assured for any Type II mixing.

Obviously, p may be larger than 1 since ? may be split into two functions, one bounded

and the other satisfying the conditions of the theorem. The same argument-holds for r(t),

however, it is clear that one would like Z to go as slow as possible to zero, since then if

the averaged version has a limit, the convergence rate of both equations to that limit is

inversely proportional to p.

It is possible to extend the theory to the cases where the partial derivatives of H have a

polynomial growth it time. Then c has to decrease faster so that the above, integrals may

still be controlled. We get the following theorem:

Theorem 3.3 Assume that B 1 , B 2 , B 3 , and 14 are bounded by t" for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 with the following:

6. 3 y > 0, c > , such that W(6) _6 -Y, and i(t) _ t - (l+c+3a), for a monotone decreasing

Z. Then

lim sup E I x,(t) - y,(t) 2 .
CO- 0 

t>0

Proof. When applying the lemma as before we get the following:

I = E O(6k)(k - 1)2"

k

11= --- E k - t))
k

III = EZ ()k)/3
k

Now chose 6k =V 0(k - 1) - (1+'(c I)+3'), then since ((t) < t(1+c *3 ' ), we get just as

before 6k/E(k- 1) > o(k - 1)1(c - '). The rest of the proof follows exactly as before. <

wopl2 v2.11 8
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Extending theorem 3.2 to the case where the partial spatial derivatives are bounded by

a polynomial in t is done by absorbing the growth of H into c, which gives the following

corollary:

Corollary 3.4 Assume that B1 , B2 , B3 and B 4 are bounded by t" for some a > 0 in

condition 4 of theorem 3.1, and replace condition 6 in theorem 3.2 with the following:

6'. 3- > 0, such that

i) PM< S-,

ii) c(t) = or(t)t - (a 4P), for p = "+, c > -, and Vt: 0 < c, 5 r(t) < C2. Then

lim sup E I Xi(t) - Yi(t) -=0.
Co- 0 t>0

An important observation has to be made here: If the deterministic version represents

a converging trajectory, e.g., if the equation represents a gradient descent, then as !ong as

i(t) >_ t- 1, the deternuinistic version will still converge to a true local ninimum, however

if i(t) < t - 1, then f0° i(r) < oo, and so the convergence of the deterministic equation is

not assured, whicd- implies that the convergence of the stochastic version to a true local

minimum is not granted.

4. An application to the synaptic modification equations of a BCM neuron

In this section, we apply the theorem to a random differential equation representing the

low governing synaptic weight modification in the BCM theory for learning and memory

in neurons, Bienenstock et al. (1982). We start vith a short review on the notations and

definitions of BCM theory, a more thorough revie,v can be found in Intrator (1990). and

the references therein.

Consider a neuron whose input is the vector x = (t,. . . , XNv), has a synaptic-weight

vector m = (Mi,..., MN), both in R NV, and activity (in the linear region) c = X • m. The

input z is assumed to be a stochastic process of Type II nixing, bounded. al )iecewise

wopl2 v2.11 9
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constant. Let 0,m, E[(z . rn)'), 0(ce E) - -c cOm. c represents the linear projection

of z onto m, and we seek an optimal projection in some sense.

The BCM synaptic modification equations are given by:

rh = P(t)0(z. , ,m)Z, m(0) = in0 , (4.1)

their averaged version is given by:

M=(t)E[O(xrfn, ,,)x], ffi(0) = mo. (4.2)

/u(t) is a global modulator which is assumed- to take into account all the global factors

affecting the cell, e.g., the beginning or end of the critical period, or state of arousal (Bear

and Cooper, 1988).

Equation (4.2) is shown to be a dimensionality reduction method based on a cost function

that favors directions m for which the distribution of the inputs is different from normal by

means of skewness (Intrator, 1990).

Our aim is to show the convergence of the stochastic differential equation'. This will be

done in two step; First we show that the averaged deterministic equation converges, and

then we use theorem 3.2 to show the convergence of the random differential equation to its

averaged deterministic equation.

The convergence of the deterministic equation

Without loss of generality, we may assume that the random process x is in the unit ball

in RN, and Var(z • m) > All m 112 > 0, which simply says that x does not lie in a subspace

or a manifold of RN. Since we are interested in dimensionality reduction. we can always

reduce a-priori the dimensionality of x so that it will span RX for some N. When the theory

is applied to a finite value random vector, e,. .. , x,, we can restrict im to be in the span

ofz,...,Zn.

wopl2 v2.11 10
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When we multiply both sides of the above equation by 7nM, assuming none of its compo-

nents is zero, we get:

1 , I = E[(x,. , -,)31 - E'[(. -,.)']
3

11_ f,., 113  _ 4A11 f a,
<- I ',, I3 - n I, ,, 114

which implies that in, 11 - " 3

Using this fact we can now show the convergence of fl,. We observe that ?h = -VR,

where R(fnz,) = -{E[( . f )3 ] - f(,)']} is the risk. R is bounded from below

since 11 fi4.11 is bounded, therefore f, converges to a local minimum of R.

The convergence of the stochastic equation

Claim Under the above conditions m.(t) converges in L2 to a local niininum of the risk.

Proof- The calculation above implies that rfit is bounded for (almost) every t.

In our case B1 , B2 , B3 a:td B 4 are independent of t or in,,, therefore, if we replace t(t)

by p(t) and apply theorem 3.2, we get

sup Em 1 .(t) - ih(t)2  
- 0.

t>O /'t0-0

fnA the solution to the deterninistic equation will converge to the same local ninimuum

, V/, if yo < C, for some positive constant C. therefore we can choose T for which

I[r,(t) -9[ < 9, P0 < C, t > T, then for t > t we have:

Im,1(t) - 9_i Inm5 (t) - bl(t)l + h, 2(t) - 1 1 2,'(t) - in (t)! +

6 6
=>- sup Elm 1(t) - y K sup Eim5 (t) - ib,(t)! + "

t ,w 2, 2/v "

wop12 v2.11Il
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6 is arbitrary, which implies that

Elm,,(t) - - 0

5. Summary

It has been shown that under mild Conditions, the equations i = eH(z,w, t), and =

eG(y, t) where G(z, t) = E[H(z,w, t)], have close trajectories in the infinite interval when

e(t) < t-. The result may be computationally useful, and as has been shown in the

example, may assist in the analysis of the random differential equation.
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